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SELF-INFLICTED VULNERABILITIES

Stephen D. Wolthusen

One of the most prominent, if sometimes controversial, figures in software

engineering resigned in 1985 from the Panel on Computing in Support of

Battle Management of the Strategic Defense Initiative Office, publishing a series

of essays declaring it unlikely that the program would meet the goals implicitly

set forth by President Ronald Reagan for the SDI program.1 Two decades later,

this assessment has gained in pertinence as transformation technologies be-

come reality and reliance increases on network-centric operations and C4ISR*

assets to achieve critical operational objectives. Concern has spread even to the

level of individual tactical units, while the potential persists for damage or at

least costly friction and lost options at the strategic level.2

While information technology has become a highly efficient force multiplier

in a large number of roles—from producing transparency in logistics flows to

providing target data for strike packages in near real time to guiding munitions

themselves—there are differences between information systems and other engi-

neering artifacts that are dangerous to ignore. As information system compo-

nents suffuse what had previously been the domain of mechanical engineering,

as well as similar disciplines, these engineering artifacts frequently come to rely

on information technology for their core functionality and hence take on the

properties previously associated only with pure information systems.

Software engineering has made only limited progress in producing large, reli-

able, and trustworthy information systems. Developing such systems (or even

their software components) that can be mathematically proven, or at least ar-

gued convincingly, to be correct and complete is feasible on a relatively small

scale, but it remains, given the consequences of faults, a daunting task at the

* Command, control, communications, computers, intelligence, surveillance, and reconnaissance.



scale contemplated and necessary for network-centric operations. Unlike in me-

chanical artifacts, uncertainty in such design criteria generally cannot be ade-

quately compensated for by safety margins.3 Any effort to develop trustworthy,

high-assurance systems faces limitations as to what can be subjected to inde-

pendent verification and validation, let alone mathematical proof with the pre-

cision and completeness of requirements and specifications.4 Success is

extremely rare.

BUILDING FORTRESSES ON SAND

Two examples suggest the gulf in scope between the systems for which capabili-

ties and correctness have been proven with mathematical rigor and those actu-

ally used in mission-critical tasks. The Ship’s Helicopter Operating Limits

System, initially deployed with the Royal Navy’s Merlin helicopter on Type 23

frigates, was developed to the standard of mathematically provable correctness.

A highly specialized and experienced team of scientists and engineers required

five years to generate 27 KLoC (thousands of lines of code) of proven and veri-

fied software.5 Moreover, there existed a physical system for the software to con-

trol, one that could be modeled precisely, complete with kinematic parameters,

and that could therefore be described exactly in a formal specification, from

which code could be derived without ambiguity.

A contrasting example would be a COTS (commercial off-the-shelf) general-

purpose operating system. One of them, Microsoft Windows 2000, contains

more than 10,000 KLoC critical to system security and operational capability;

depending on metrics used, Microsoft Windows 2003 contains approximately

50,000 KLoC. None of that code is modeled, specified, or implemented in such a

way as to permit even evaluation of the trustworthiness of a component running

this operating system, regardless of the characteristics of the layered applica-

tions. Interactions between the layered application and the underlying operat-

ing system escape, by definition, modeling and specification. Despite advances

in computer science and software engineering, it is not at all clear that such large

demands are within reach of the methods used for smaller systems even if the re-

sources and time for such an effort are not bounded.

This is in large part due to the fact that the complexity of interactions among

software components typically increases significantly faster than the size of the

code base, and it does so in a superlinear fashion (i.e., typically as a polynomial

in the LoC). While strict hierarchical design methodologies and implementa-

tions have long been the subject of research, success in the field has been some-

what limited.6 Even under optimistic assumptions regarding defect rates,

therefore, statistical models predict the presence of several thousand defects for

such a COTS product—even with the additional caveat noted above, that

1 0 4 N A V A L W A R C O L L E G E R E V I E W



unspecified behavior can result in ambiguity as to what constitutes a defect.

Though the Microsoft Windows 2000 operating system has been certified as

meeting the Common Criteria Evaluation Assurance Level 4 for trustworthi-

ness, critical vulnerabilities are still discovered with some regularity, which is ex-

tremely likely to continue for the lifetime of the system.7

Even worse, it is not sufficient even to have individual components with

proven certain security and assurance characteristics; their combination, such as

between systems on a network, can still be insecure.8 Such problems also arise—

at levels of rigor far below formal modeling and proof—from configuration

variations and the introduction of new subsystems (attached devices, new pro-

grams, or program revisions) within a single computer system. The ultimate re-

sult is a staggering combinatorial problem that simply cannot be addressed by

mere testing, particularly since by definition the types of defects and cascading

failure modes must be assumed to be triggered deliberately by an adversary with

precise knowledge of the information system, rather than obeying standard

probability distributions.

Despite these well known limitations in trustworthiness, assurance, and

manageability, off-the-shelf information technology products—for which

safety and reliability requirements are generally relevant only as far as the civil-

ian market will bear the inevitable increases in cost and decreases in otherwise

desirable features—are increasingly used at all levels in the U.S. Navy, from plan-

ning to engineering systems onboard warships. This introduces a significant

number of failure modes that must be considered but are nevertheless fre-

quently ignored with predictable results. A case in point is an engineering net-

work casualty aboard USS Yorktown (CG 48) in September 1997 that left the

cruiser dead in the water for about two hours and forty-five minutes.9 Land

combat systems do not typically have the same levels of complexity—at least,

not yet—but the gap is closing rapidly as new electronics subsystems are added

and internetworked, as in the M1A2 main battle tank.

NO WAY BACK

Even if it were not already established acquisitions policy, fiscal considerations

would dictate that COTS products, or marginal variations on them, will con-

tinue to dominate procurement of large parts of C4ISR assets. That is true as

well for critical elements of civilian infrastructure that are increasingly relied

upon for mission-critical requirements. Even if procurement of custom solu-

tions were considered, such alternatives would lag considerably behind com-

mercially available systems in terms of functionality.10

This reliance on commercially available products has already shown its draw-

backs in such areas as electronics for weapons systems, where the cost and
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feasibility of reengineering are even less attractive than for purchasing systems

reliable for the “life of type.”11 For software-based COTS systems, the outlook is

even bleaker, for a number of reasons. First, hardware components are tradition-

ally designed to a significantly higher level of quality, not least because errors in-

troduced at the design stage are considerably more expensive to correct than

with software-based systems. Hardware already manufactured with defects may

need to be destroyed, recalled, and, if the defect is found, replaced.

For their part, most commercially available microprocessors have a sizable

number of “errata,” documents detailing known problems and, where possible,

work-arounds. Such errors have occasionally garnered much public attention,

with customers demanding replacement of defective parts. Nonetheless, the in-

centives for software vendors are somewhat different. For them it is cost-effective

to ship a product with possible, suspected, or even known defects and, by and

large, correct them only when reported from the field. This practice appears to

be accepted by virtually all users of COTS products.12

Thus, it is frequently possible simply to replace a microprocessor or other

electronic component with a newer, functionally equivalent component as it

reaches the end of its service life. In software-based systems, however, not only

functionality of obsolete and ill-defined software must be reproduced but, fre-

quently, its defects as well. The behavior of the actual system may well depend on

fixes and work-arounds installed in the old equipment.

This situation has led, particularly in the financial services industry, to cases

of decades-old financial software running on multiple layers of simulated oper-

ating systems and “middleware” components—not unlike Russian matryushka

nesting dolls. Each of these layers introduces its own defects and uncertainties,

limiting overall efficiency and ul-

timately assurance. As a result,

presumably, the reliability of

complex software-based systems

drops. Options to redress this

quandary are quite limited, since frequently when defects and vulnerabilities are

discovered the remedies require configuration changes (for both hardware and

software, the former often necessitating the latter) beyond the immediate cor-

rective measure.

A second, related problem is the tendency of software systems to make use of

the rich functionality available in COTS systems or systems assembled from ex-

isting components. The dependencies introduced in commercial systems are

less well known than for government in-house, or GOTS, components. This in-

troduces a further web of unknowns. Situations can result where repairing a de-

fect in one component generates cascading side effects, possibly rendering the
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entire system unusable—even when the components are all from a single ven-

dor. These dependencies produce systems for which the traditional last resort of

“life-of-type buys” is simply not feasible, particularly once vulnerabilities be-

come publicly known; for which reengineering—just as with civilian systems—

is frequently a euphemism for complete redevelopment; and for which assur-

ance in mission-capability declines precipitously over time as new elements and

components are introduced into already underdefined designs.

The alternative of developing and maintaining similarly feature-rich systems

with provably high assurance, however, is likely not to be palatable to decision

makers except under the most dire requirements, and even then it may not be

feasible. An example of such an attempt was the onboard flight control software

of the Space Shuttle program. This software, though far less complex than that

associated with most COTS-based environments and so, one might have ex-

pected, less expensive, has cost in excess of a hundred million dollars to main-

tain.13 Indeed, the very concept of mechanized proofs of correctness has been

the subject of intense scrutiny.14

SAME TOOLS, DIFFERENT OBJECTIVE

Despite dire predictions implied by these considerations, and although a number

of highly critical situations have been documented, in remarkably few incidents

have malfunctioning information systems led directly to loss of life or similarly

grave consequences.15 The reason may be, however, that systems are being built with

adequate safeguards, and the complexity of critical systems is being limited not be-

cause of laws, regulations, formal mathematical methods, or similar engineering

mandates but because engineers are aware of such warnings as those discussed

here about software safety and reliability.16

However, there exists a marked difference between adequate provision for

failure in the majority of civilian application areas and in defense systems,

whether they are to be relied on in harm’s way or used in supporting roles. Most

civilian systems (with some obvious exceptions such as avionics) can ensure

safety by shutting down an information subsystem or components.17 Such a

“fail-stop” mechanism, however, is not likely to be an option in defense-related

applications, let alone in those used in combat, unless features for recovery and

falling back on manual emergency procedures can be employed.

Traditionally, critical applications without fail-stop options, such as flight-

control systems, have relied on multiple redundancy and component-based

survivability, as well as fallback. This approach, however, implies significant ex-

pense, delay, and a need to codify and validate elaborate operating procedures,

clearly beyond what is feasible. For most defense-related information systems,

one cannot unambiguously demonstrate the effectiveness of redundancy or
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fallback, and in any case the required decision loops are likely to be faster than

even partial manual fallback mechanisms can achieve.

All this implies, especially given the usual circumstances under which defense

systems must operate, that even a system known to be in some degree defective

can be acceptable (for instance, a sensor that occasionally reports false measure-

ments) if the alternative would be downing it and jeopardizing a mission. What

is critical here is to recognize that such failures can and will occur and must be

anticipated at the level of overall mission planning and execution.

Even in combat support missions, such as logistics, where time scales are less

compressed than in combat itself, flaws or failures in information systems can be

extremely detrimental to overall objectives if inadequate consideration has been

given to their possibility. While

clerical errors can be made, and

have always been, without the aid

of electronic information sys-

tems, the results can be consider-

ab ly le s s amus ing than the

delivery of snow plows and road

salt to Danish troops in Basra at

the height of the summer of 2003. Such errors could render entire missions im-

possible if the rapid and unchecked propagation of their effects causes large vol-

umes of data to become invalid or even merely unreliable. The lack of fallback

solutions in case of a severe failure of a logistical system, whether caused by an

intrinsic defect or a deliberate attack, can severely affect combat readiness or en-

danger missions. In the worst case, it might be necessary to open each and every

container and crate to locate vital items, then to ascertain the location and needs

of each unit requiring them.

It is therefore imperative to consider, for each use of information systems, the

faults that could be induced and the effects, both primary and secondary, they

could have on overall mission objectives. This has to be done however mundane

an application seems to be, even for commercial desktop and productivity soft-

ware. It is precisely the improbable and unanticipated side effect that can cause

the most significant disruption, as no contingency plans are likely to exist. Tech-

nical countermeasures can be identified and taken, but information assurance

rests equally on the organizational factors, along with technical prevention,

hardening, and countermeasures. Whether information is delivered electroni-

cally or on a scrap of paper is largely irrelevant—if it is accurate, complete, and

received in time.

A corollary to this observation is to partition information systems in such a

way that individual elements to be employed in network-centric warfare (NCW)
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are developed to desirable levels of assurance (presumably through testing and

other verification and validation measures), and independently, to establish base-

line capabilities. The additional capabilities provided by the linking and

internetworked operation of such information systems must, given the limitations

in providing assurance sketched above, be treated as fundamentally ephemeral.

ASSURANCE AND INFORMATION WARFARE

Information warfare thus far has clearly not lived up to the expectations raised

during the 1990s.18 While it would be clearly imprudent to dismiss IW as yet an-

other ploy to focus resources and funding through overstated threat analyses—

the threats identified are very real indeed, if somewhat exaggerated—the con-

cept can be carried farther. Information warfare may or may not be useful in the

foreseeable future as an instrument of warfare in the narrow sense of subjugat-

ing the will of an adversary to one’s own, because of the potential impact on ci-

vilian populations (an impact that clearly makes it a potential instrument for

terrorists or other entities not bound by the Geneva Conventions Relative to the

Protection of Civilian Persons in Time of War). Nonetheless, the role of infor-

mation in warfare can hardly be overstated and has in fact been understood

since antiquity.19 It is precisely in that respect, however, in which forces relying

on network and information-centric systems could expose themselves unknow-

ingly (or worse, having ignored known threats) to new modes of attack.

A design criterion for cryptographic protocols has been proposed in which

the authors assume “the presence of a hostile opponent, who can alter messages

at will. In effect, our task is to program a computer which gives answers which

are subtly and maliciously wrong at the most inconvenient possible moment.”20

In designing information systems to take account of their effects on mission ac-

complishment, or indeed their effect on the planning and execution of missions

themselves, the same assumptions need to be made.

Defects in information systems obviously can cause severe damage and dis-

ruption even without intervention of an adversary. It is the hallmark of skilled

attackers, however, to identify weaknesses and vulnerabilities in information

systems that, taken by themselves, might seem insignificant. Beginning with

such small openings, attackers will attempt to escalate the damage potential un-

til their objectives have been reached. Sophistication is not always necessary; fre-

quently vulnerabilities exist that make attacks a rather rote, straightforward, and

even automatable matter.

Improving information assurance can therefore be considered a

two-pronged undertaking. One part consists of identifying the mission assur-

ance category for each system and component, as laid down by the assurance re-

quirements.21 The possible system failure modes, both internal and external, can
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then be identified (using, for instance, fault-tree analysis) and remedies or con-

tingency plans devised.22

The other part of ensuring overall information assurance is far more chal-

lenging. It requires considering effects on other systems that operate (at least

nominally) independently or at higher levels and devising similar mitigation

and remediation strategies. One might justifiably argue that the onus is on sys-

tems “upstream” of the system under review. This argument is valid, however,

only under highly idealized circumstances, since it assumes that a system once

examined is permanently frozen with regard to its potential harmful effects on

upstream systems. To the contrary, and as noted above, even apparently minor

changes can invalidate critical assumptions and introduce new failure modes.

The insidiousness of the problem lies primarily in internetworking effects,

which can also have transitive detrimental effects across multiple intermediate

systems and components. Consider a network with critical systems built upon a

vulnerable COTS base into which a piece of malicious code is inserted—rapid

spread throughout a possibly monocultural information system network can

cripple vital operational capabilities.23 In aviation safety, one frequently hears of

“long, thin chains” leading to the few documented cases of mechanical failure.

Such chains exist in information-assurance failures also, but human and organi-

zational elements must be taken into consideration as well. When information

assurance is considered this way, defenses against information warfare attacks

become a welcome but implicit side effect of overall information assurance,

since there is no need to specify deliberate actions an adversary might take, since

any such action must already have been considered pursuant to the most cher-

ished law of engineering—Murphy’s.24

IMPACTS ON NETWORK-CENTRIC WARFARE

Even in highly asymmetric conflicts, the temptation must be resisted to extract

maximum economies of force on the basis of an assumption that technological

superiority, particularly in information systems, ensures success. There exists a

profound danger that the wrong lessons will be learned, particularly from the

successes of ENDURING FREEDOM and IRAQI FREEDOM. If they are, future plans

and operations will be built on highly brittle foundations.25

Operations, whether at the strategic or tactical level, should not be predicated

upon the full nominal capabilities of network-centric organization. Account

must be taken at the outset of the considerable spectrum of possible degradation

or complete failure of information systems and other elements, regardless of

cause, but certainly including enemy information operations. Otherwise, mis-

sions could commence under overoptimistic assumptions of forces required or

objectives possible; success would then require that the vast majority of
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information system components operate at peak performance for the entire du-

ration of the mission. Plainly, that cannot be safely assumed.

Planning, then, should allow for contingencies that require humans in the

loop at critical junctures to transmit and process mission-critical information

when automated systems fail, and missions should be structured accordingly.

This is, ultimately, the price one has to pay for using highly complex, inter-

networked systems of low assurance. It also means, however, that the ability to

short-circuit the enemy’s decision cycle may be degraded considerably at any

given time by system failure. To restore overall decision speed and responsive-

ness, it may be necessary to shift at certain points, if only temporarily, to a hier-

archical, pre-network-centric structure, or vice versa.26 Planning should identify

such junctures in advance and explicitly include capabilities that permit infor-

mation system components to be used effectively even when operating in isola-

tion or only on a small component of the overall network. Ultimately, however,

it is information systems, both civilian and defense, that must change to improve

survivability and assurance, as more and more military systems are designed

that cannot function at all without information components.
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